

Evolution of 'Diseases' in Florida 1980-2017

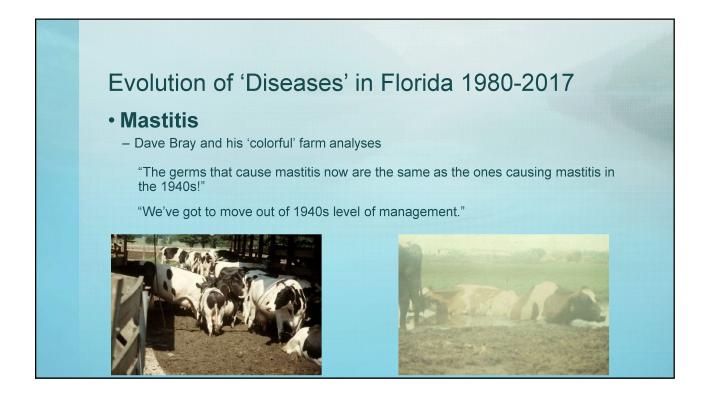
Mastitis

- 1980s I'd go to meetings and get laughed at by other veterinarians
- Milk quality was keeping milk 'legal'

Evolution of 'Diseases' in Florida 1980-2017

Mastitis

- 1980s I'd go to meetings and get laughed at by other veterinarians
- Milk quality was keeping milk 'legal'
- Milker schools, Parlor Checks (milking machine function), Cultures

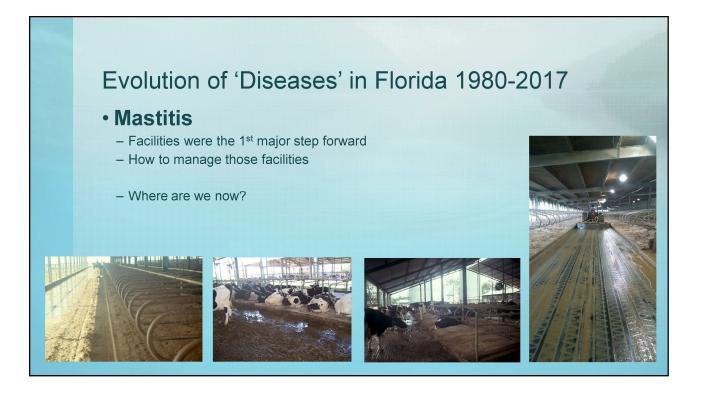


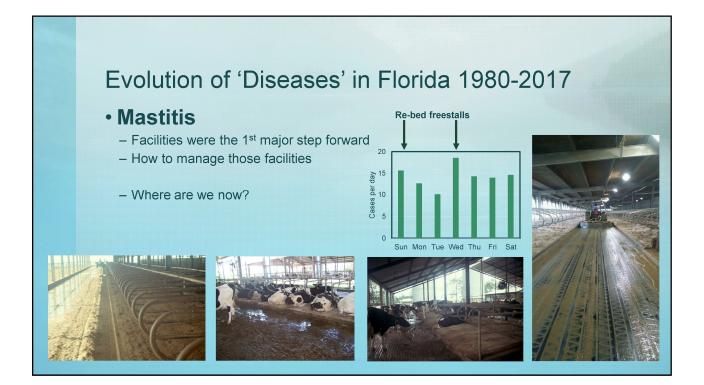
Time spent in parlor vs time spent in barns/pasture

5-6 min 2-3x/d vs 'the rest of the day'

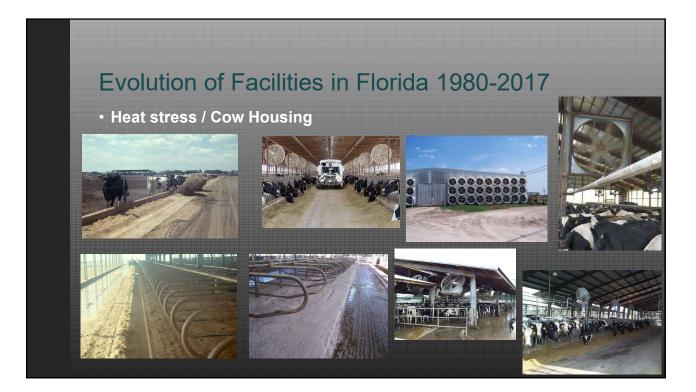
Evolution of 'Diseases' in Florida 1980-2017

Mastitis


- Facilities were the 1st major step forward
- How to manage those facilities



Evolution of 'Diseases' in Florida 1980-2017 • Mastitis – Facilities were the 1st major step forward – How to manage those facilities

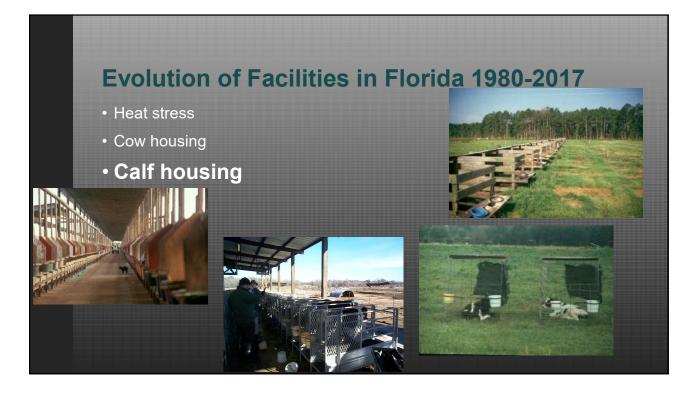


Evolution of Facilities in Florida 1980-2017

- Heat stress
- Cow housing
- Calf housing
- Maternity housing

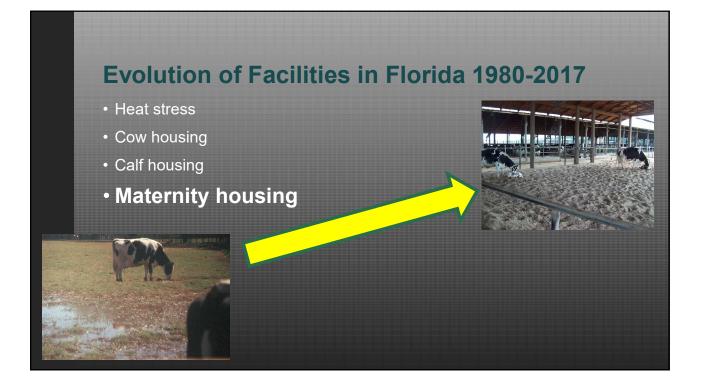
Evolution of Facilities in Florida 1980-2017

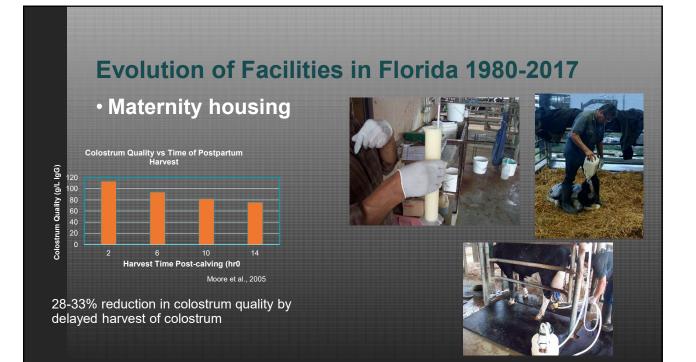
Heat stress / Cow Housing / Cow Comfort

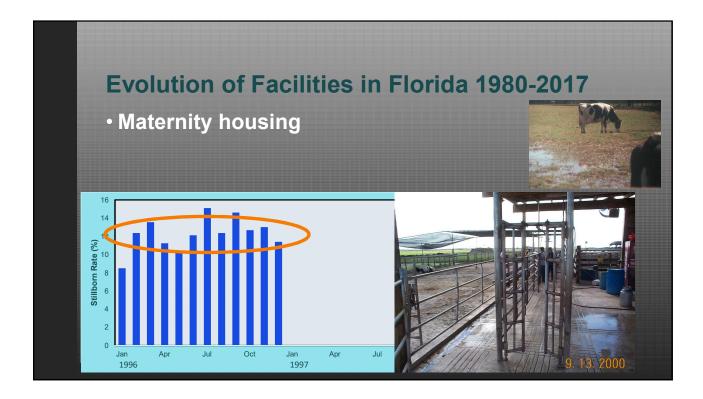


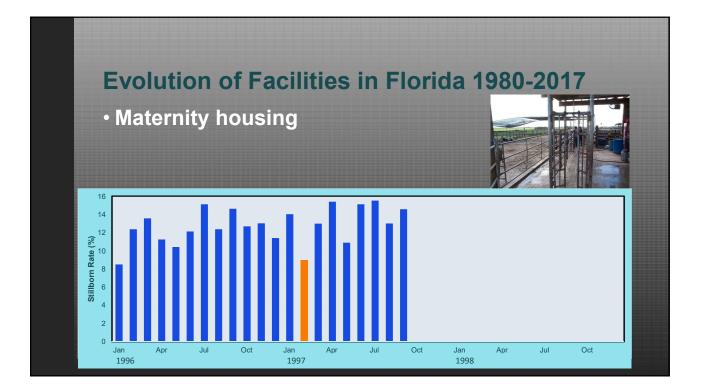
Evolution of Facilities in Florida 1980-2017

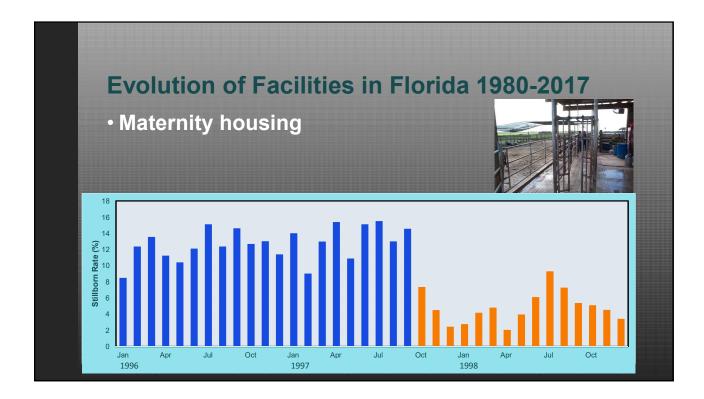


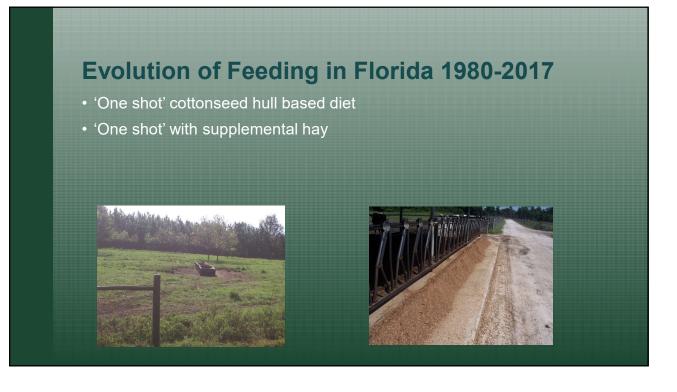


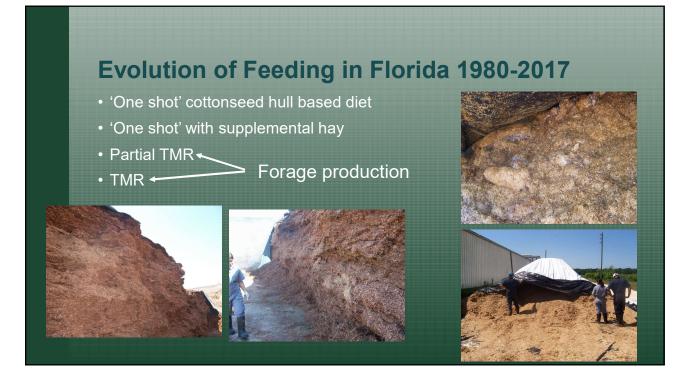










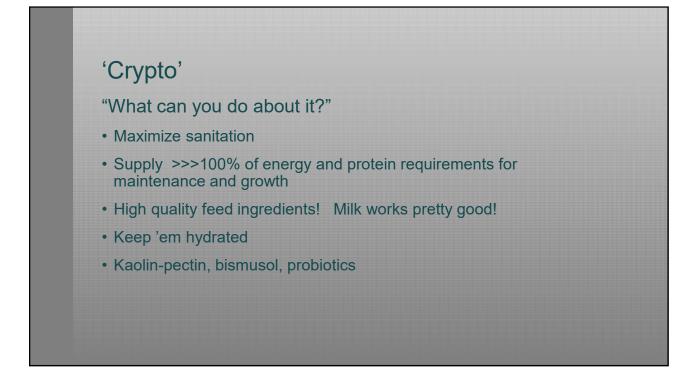


End Result 1980-2017

- Herd milk production >28,000 lb/cow/lct
- SCC <200,000 year round
- Clinical mastitis rate <2 cases/100 cows/mo
- Pregnancy Rates >22%
- Cull Rates <30%
- Calf Mortality Rates <3%

Why Not Reproduction?

- Change is slow
- I am slower!


Petroglyphs of southern Utah, circa 1650

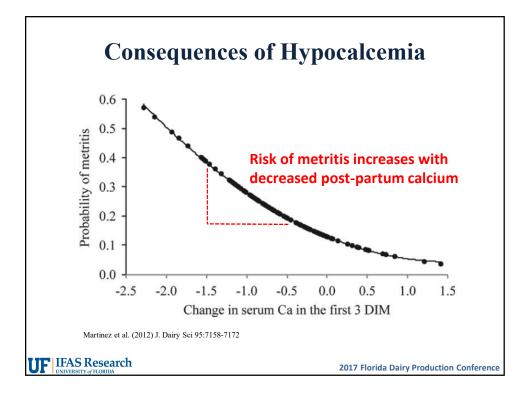
- Diarrheal disease of young calves
- · Every calf in Florida gets infected with crypto
- · Every calf in Florida becomes diseased
- "What can you do about it?"

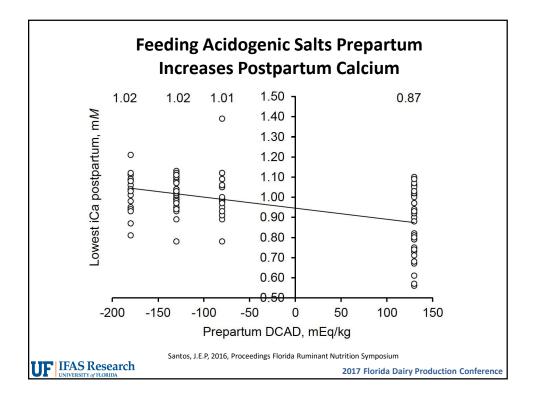
'Crypto'

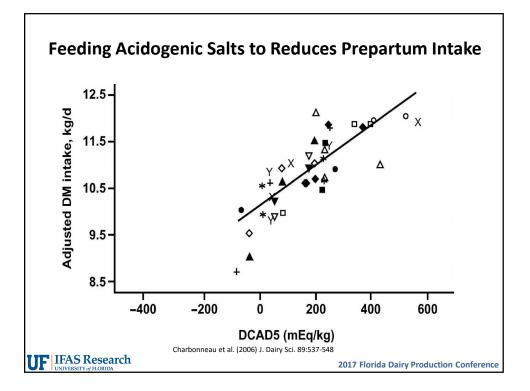
- Antibiotics Halofuginone, Amikacin, Paramamycin
- Antiparasiticides Deccox, Bovatec
- Activated charcoal & wood vinegar 'First Choice'
- Herbals Essential oils of oregano
- Aloe vera juice "Cures everything!"
- Vaccine Promises, Promises
- Disinfectants ammonium hydroxide, hydrogen peroxide, chlorine dioxide, 10% formol saline, and 5% ammonia

NOTES

2015 – 2016 Southeast Milk Checkoff Research Project Report


Effects of Prepartum Acidogenic Salts on Calcium and Energy Metabolism in Transition Cows

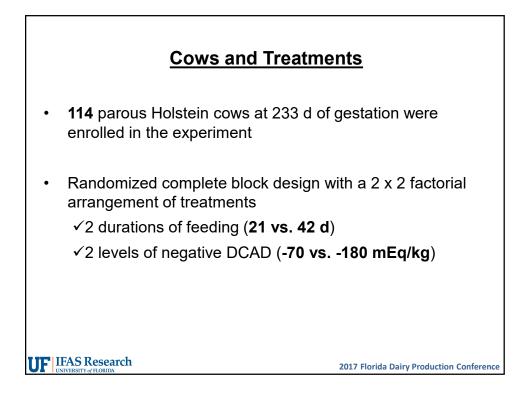

C.L. Higuita, R. Zimpel, W. Ortiz, F.R. Lopez, A. Vieira-Neto, B. Faria, M.L. Gambarini, E. Block, <u>C. Nelson</u>, and J.E.P Santos

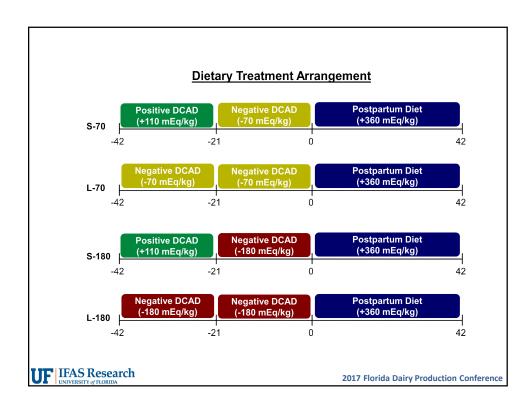

> Florida Dairy Production Conference Gainesville, April 20, 2017

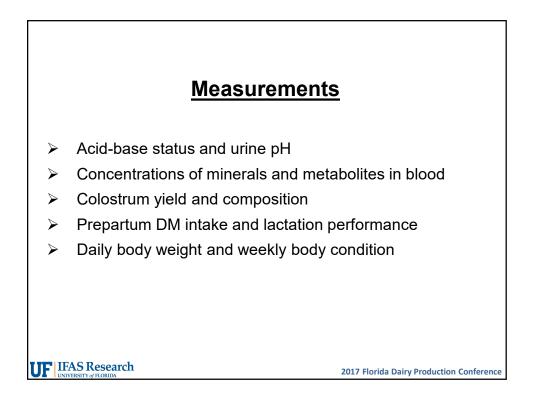
UF IFAS Research

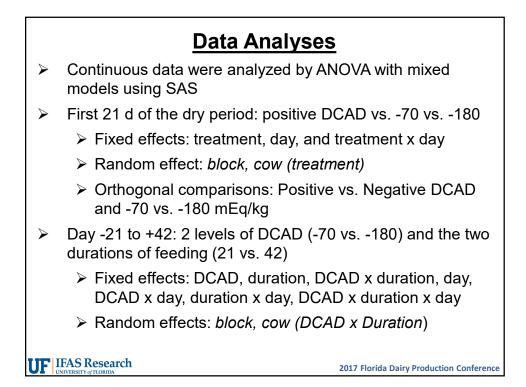
2017 Florida Dairy Production Conference

<u>Hypothesis</u>

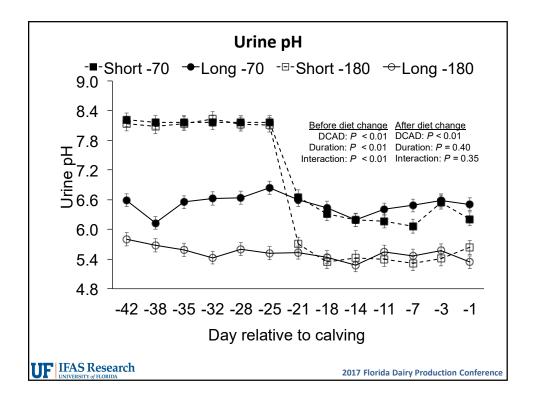

Reducing the negative DCAD from -70 to -180 mEq/kg and extending the duration of feeding from 21 to 42 days will not affect performance and metabolism in dairy cows

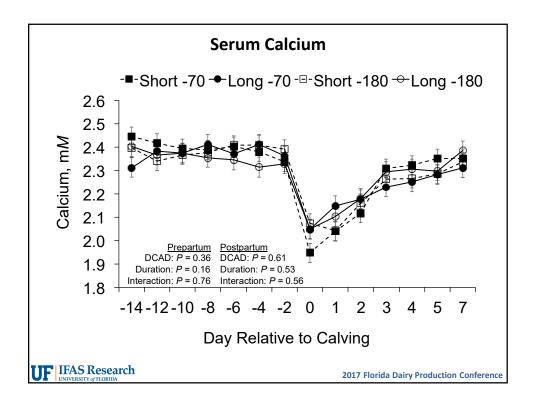

Objective

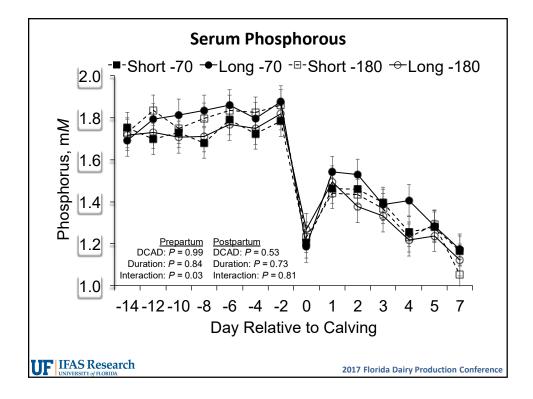

Evaluate the effects of two levels of negative DCAD, -70 vs. -180 mEq/kg, and two durations of feeding, 21 vs. 42 days, on performance and metabolism in parous Holstein cows

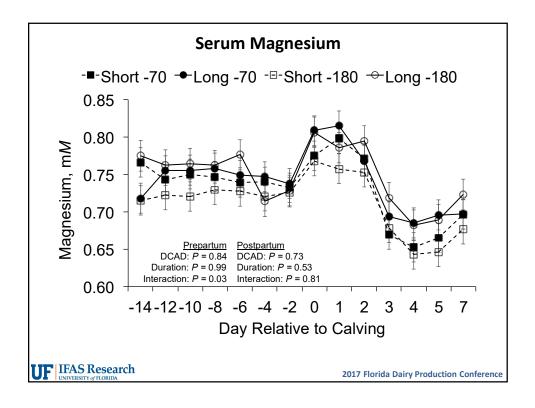

UF IFAS Research

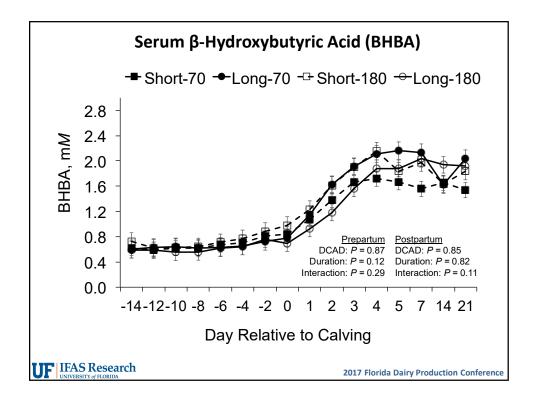
2017 Florida Dairy Production Conference

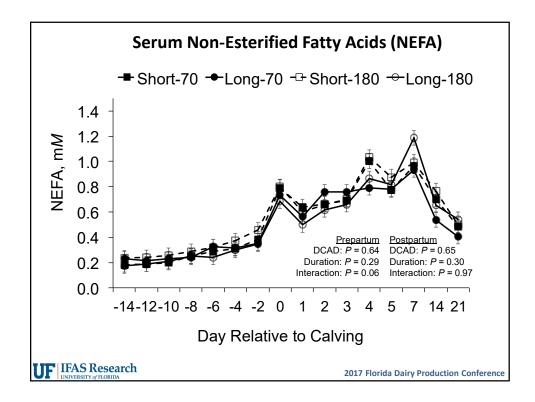


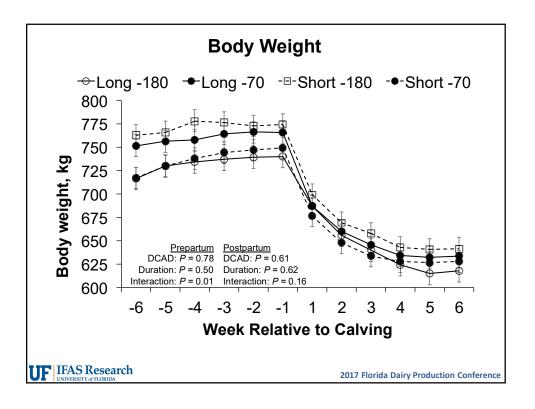


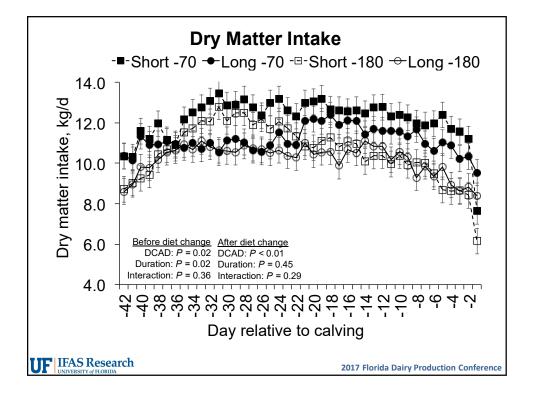


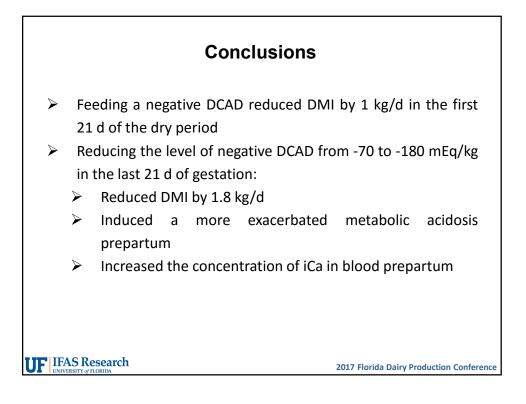

	Diet Compo	osition	
		Diet	
Ingredient (% DM)	Positive DCAD	-70 mEq/kg	-180 mEq/kg
Corn silage	34.2	34.2	34.2
Triticale silage	20.4	20.4	20.4
Bermuda hay	6.7	6.7	6.7
Straw	13.8	13.8	13.8
Citrus pulp	7.7	7.1	6.7
Soybean meal	13.1	8.5	5.8
Prepartum mineral	4.2	4.2	4.2
Bio-Chlor*	0	5.2	8.3

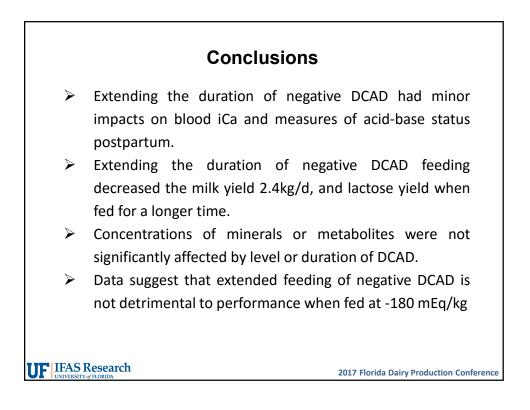

	Diet					
tem, DM basis	Positive DCAD	-70 mEq/kg	-180 mEq/kg			
CP, %	14.9 ± 0.8	14.7 ± 0.4	14.6 ± 0.6			
ADF, %	29.4 ± 1.4	28.9 ± 1.2	29.1 ± 1.1			
NDF, %	43.1 ± 1.7	43.7 ± 1.5	43.8 ± 1.5			
Forage NDF, %	39.3 ± 1.7	39.3 ± 1.7	39.3 ± 1.7			
Nonfiber CHO, %	31.7 ± 1.3	31.1 ± 1.6	31.1 ± 1.9			
Starch, %	12.3 ± 0.4	12.6 ± 0.5	12.9 ± 0.6			
Fat, %	2.8 ± 0.2	2.8 ± 0.1	2.8 ± 0.1			
Ca, %	0.67 ± 0.07	0.64 ± 0.05	0.62 ± 0.05			
P, %	0.33 ± 0.01	0.33 ±0.02	0.33 ± 0.03			
Mg, %	0.44 ± 0.06	0.47 ± 0.06	0.48 ± 0.03			
K, %	1.54 ± 0.10	1.49 ± 0.09	1.46 ± 0.09			
S, %	0.29 ± 0.03	0.40 ± 0.03	0.47 ± 0.03			
Na, %	0.08 ± 0.03	0.11 ± 0.03	0.13 ± 0.04			
Cl, %	0.50 ± 0.07	0.86 ± 0.07	1.11 ± 0.03			
DCAD, mEq/kg	+109 ± 35	-66 ± 17	-176 ± 20			



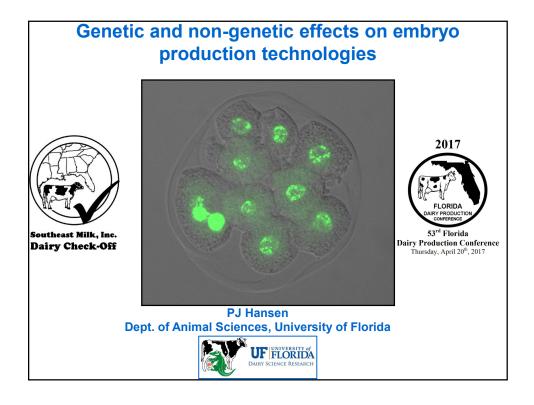


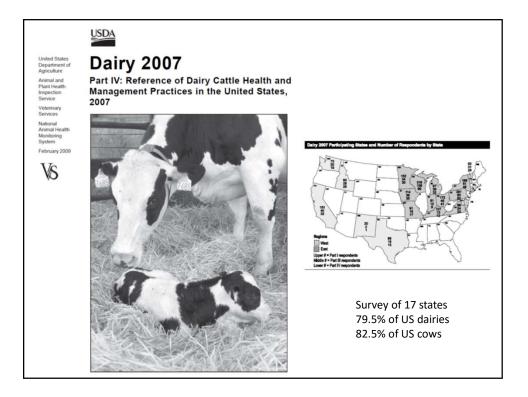

	Treatment				_			
	Sł	nort	Lo	ng	_		P-value	
Item	-70	-180	-70	-180	SEM	Dur	DCAD	Inter
Blood pH	7.419	7.382	7.413	7.384	0.007	0.80	< 0.01	0.58
Blood PCO _{2,} mm Hg	40.4	38.1	39.8	39.7	0.75	0.50	0.12	0.14
Blood HCO ₃ -, m <i>M</i>	26.2	22.6	25.7	23.8	0.5	0.49	< 0.01	0.13
Base excess, m <i>M</i>	1.62	-2.40	1.04	-1.43	0.63	0.75	< 0.01	0.21
Blood iCa, m <i>M</i>	1.26	1.29	1.25	1.28	0.01	0.44	< 0.01	0.93


Short Item -70 -180 -70 Colostrum, kg/d 4.56 3.49 4.43 Fat yield, % 4.31 4.92 4.46 Protein yield, % 11.77 12.61 12.57 Lactose yield, % 3.62 3.50 3.55	4.63		Dur 0.45	P-value DCAD 0.14	Inter 0.29
Colostrum, kg/d 4.56 3.49 4.43 Fat yield, % 4.31 4.92 4.46 Protein yield, % 11.77 12.61 12.5 Lactose yield, % 3.62 3.50 3.55	4.26 4.63	0.42	0.45		
Fat yield, % 4.31 4.92 4.46 Protein yield, % 11.77 12.61 12.5' Lactose yield, % 3.62 3.50 3.55	4.63			0.14	0.29
Protein yield, % 11.77 12.61 12.5 Lactose yield, % 3.62 3.50 3.55		0.40	0.05		
Lactose yield, % 3.62 3.50 3.55	7 12 57		0.85	0.33	0.58
	12.01	0.44	0.38	0.34	0.34
	3.51	0.08	0.68	0.33	0.66
SNF yield, % 16.66 17.37 17.4	5 17.37	0.44	0.37	0.47	0.37
SCC yield, % 6.05 6.65 6.74	6.51	0.27	0.31	0.49	0.12
Colostrum NE, 1.21 1.31 1.26 Mcal/kg	1.28	0.04	0.77	0.22	0.36

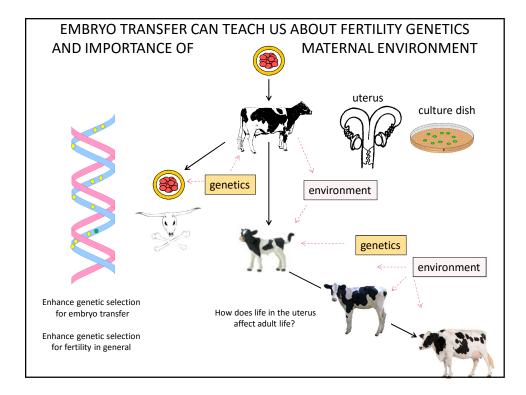

	Treatment							
	S	hort	Lo	ng	-	P-value	P-value)
Item	-70	-180	-70	-180	SEM	Dur	DCAD	Inter
Milk, kg/d	43.1	41.7	39.1	41.1	1.1	0.04	0.79	0.13
3.5 FCM, kg/d	46.7	46.0	43.9	45.8	1.3	0.23	0.63	0.31
ECM, kg/d	45.2	44.5	42.4	44.3	1.2	0.21	0.62	0.30
Fat yield, kg/d	1.73	1.73	1.66	1.73	0.06	0.52	0.57	0.51
Protein yield, kg/d	1.27	1.25	1.18	1.24	0.04	0.18	0.64	0.30
Lactose yield, kg/d	2.00	1.94	1.82	1.91	0.06	0.05	0.78	0.19
SNF yield, Kg/d	3.64	3.55	3.34	3.50	0.10	0.08	0.72	0.22
Milk NE, Mcal/kg	0.731	0.748	0.757	0.753	0.009	0.10	0.50	0.26

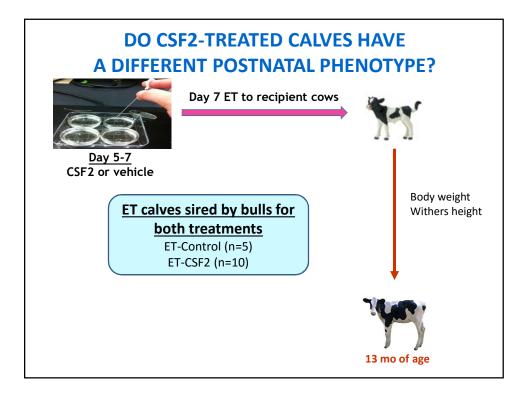
Postpartum Performance: Colostrum Yield and Components

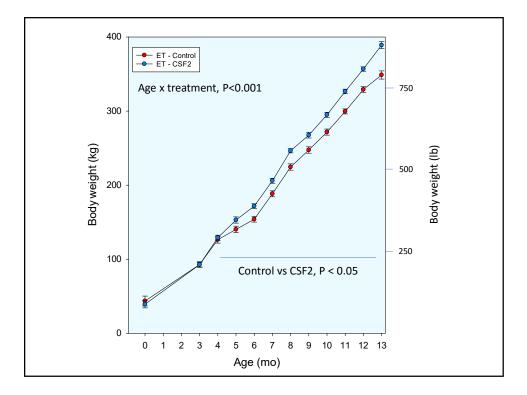




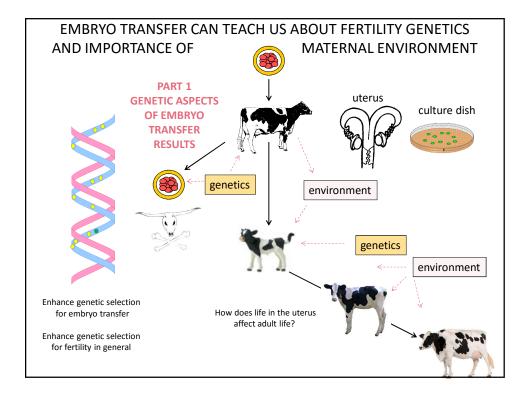
		ik You!
	iate Students:	Funding:
Camil	o Lopera Higuita	Southeast Milk Checkoff
-	v Zimpel m Ortiz	Arm and Hammer Animal Nutrition
Franci	sco Lopez	2017
Achille Boliva	es Vieira-Neto r Faria Lucia Gambarini	
		FLORIDA DAIRY PRODUCTION CONFERENCE
		53 rd Florida
		Dairy Production Conference
		Thursday, April 20 th , 2017
UF IFAS R UNIVERSITY of	esearch	2017 Florida Dairy Production Conference


NOTES

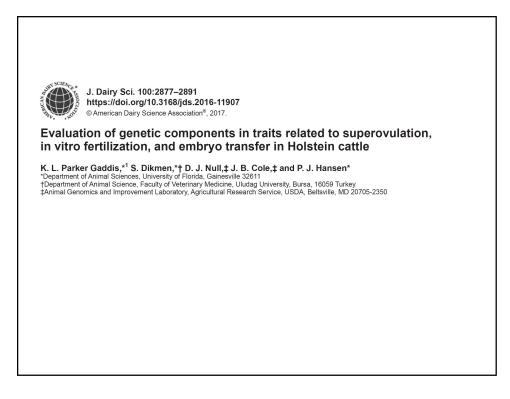


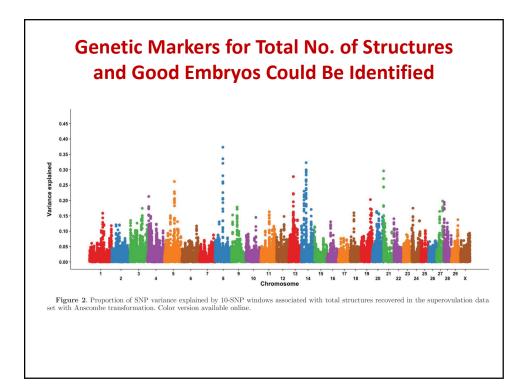


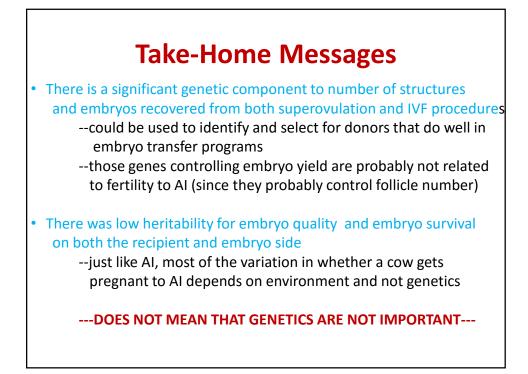
n. Operation average percentage of cattle pregnancies conceived during the previous 12 months by breeding method, and by herd size:


			Herd S	Size (Nu	mber of	Cows)		
	(Fe	wer 100)		lium -499)		rge r More)		ll ations
Breeding Method	Pct.	Std. Error	Pct.	Std. Error	Pct.	Std. Error	Pct.	Std. Error
Natural service (bull-bred)	29.1	(3.3)	22.0	(2.8)	19.7	(4.0)	26.8	(2.4)
Al (after detected estrus or timed)	70.3	(3.2)	77.0	(2.8)	79.9	(3.9)	72.5	(2.4)
Embryo transfer (superovulated or <i>in vitro</i> embryo)	0.6	(0.2)	1.0	(0.4)	0.4	(0.2)	0.7	(0.2)
Total	100.0		100.0		100.0		100.0	



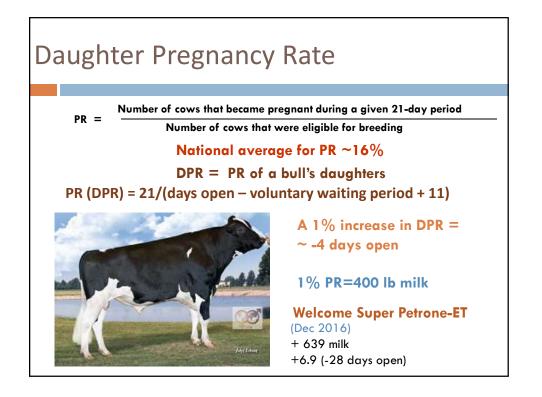


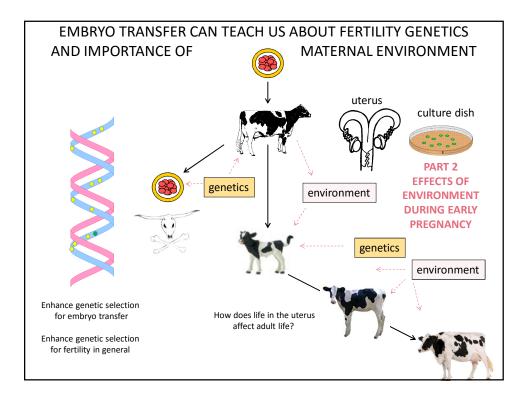




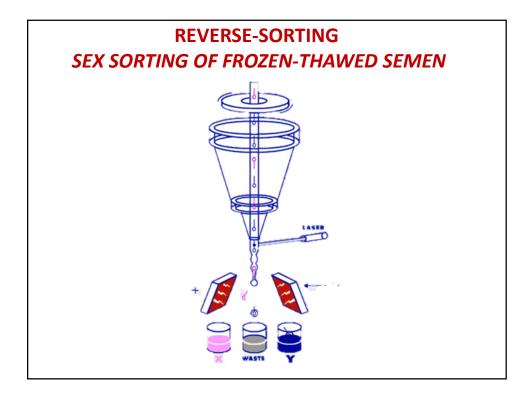
Heritabilities for Embryo Yield and Pregnancy Success After Transfer

Trait	Heritability
Superovulation (n=926)	
Total structures recovered	0.32
Total no. good embryos	0.21
In Vitro Fertilization (n=628)	
Total structures recovered	0.15
No. of cleaved embryos	0.12
No. of high quality embryos	0.01
Proportion of embryos high quality	0.04
Embryos Transferred (n=12,089)	
Pregnancy success, recipient	0.03
Pregnancy success, embryo	0.02

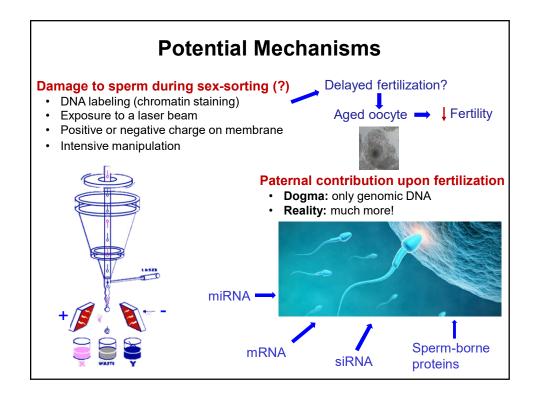


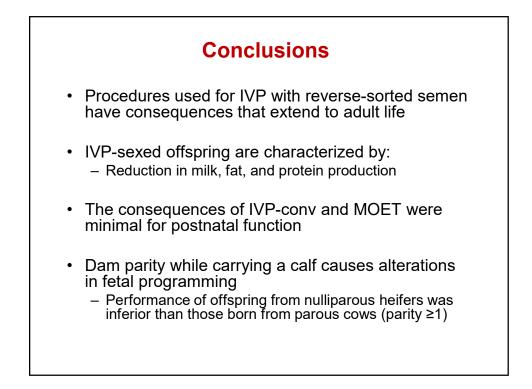


	Holstein o	ро	pulat	tion			
≤ -1.0	PTA for DPR (Rel. ≥ 0.25) ≥ +1.5	Lo	cation	# Dairies	High DPR	Low DPR	Total
Low DPR	High DPR	FI	lorida	6	677	137	814
		Ca	lifornia	5	394	1129	1523
		٦	Total	11	1071	1266	2337
Genetic information (PTA values)			Р	henotyp (Fa	oic info rm dat		on
• Heife	hter pregnancy rate (E r conception rate (HCR conception rate (CCR)	ج) `	• Se	egnancy rvices pe ys open			ervice


Differences in fertility between high and low DPR groups

Troit	N	LSMEANS (%) (SEM)				Duralua
Trait	Ν	High	ו DPR	Low	DPR	– P value
Preg. rate first service (Lact1)	2213	53.1	(1.69)	28.6	(2.32)	<0.0001
Preg. rate first service (Lact2)	1969	43.9	(1.77)	23.0	(2.38)	<0.0001
Preg. rate first service (Lact3)	1321	41.0	(1.88)	25.0	(2.53)	<0.0001
			LSMEAN	NS (SEM))	_
Trait	N	High	n DPR		DPR	– P value
Services /conception (Lact1)	2213	1.93	(0.06)	3.26	(0.07)	<0.0001
Services /conception (Lact2)	1969	2.09	(0.07)	3.30	(0.07)	<0.0001
Services /conception (Lact3)	1321	2.20	(0.08)	3.20	(0.10)	<0.0001
Days open (Lact 1)	2213	98	(2.59)	163	(2.94)	<0.0001
Days open (Lact 2)	1969	112	(2.80)	167	(3.13)	<0.0001
Days open (Lact 3)	1321	110	(3.24)	158	(3.81)	<0.0001





	AI	IVF-conv	IVF-sexed	Superov.	P-value
Genomic PTA for milk (lb)	447±12ª	638±37 ^b	625±26 ^b	516±40 ^{ab}	<0.000
Genomic PTA for fat (Ib)	19.6±0.4ª	32.6±1.5 ^b	31.5±1.1 ^b	32.1±1.5 ^b	<0.000
Genomic PTA for protein (lb)	16.1±0.2ª	24.4±0.9 ^b	23.3±0.7 ^b	21.1±0.9 ^b	<0.000
Dam PTA for milk (lb)	152±13ª	477±73 ^b	401±61 ^b	45±66ª	<0.000
Sire PTA for milk (lb)	727±14ª	762±41ª	1015±29 ^b	807±46ª	<0.000
Net merit dollars (\$)	321±3ª	456±9 ^b	464±6 ^b	420±10 ^c	<0.000
Genomic PTA for DPR	1.9±0.03ª	2.0±0.09ª	2.4±0.06 ^b	2.1±0.1 ^{ab}	<0.000

(months) Days open, first 10(lactation (d) Production traits	.5±0.1).0±2.1	23.8±0.3 108.3±5.5	23.2±0.2 102.7±3.9	23.3±0.3	0.4520
(months) Days open, first 10(lactation (d) Production traits					0.4520
lactation (d) Production traits).0±2.1	108.3±5.5	102 7+3 9	07 5 7 0	
			102.7 ±0.9	87.5±7.6	0.1479
• • • • • • • • • • • • •		— 706 lb ——	1		
Projected actual milk 242 yield, 305 d (lb)	83 ±6 8ª	24081±220 ^{ab}	23577±167 ^b	23960±328 ^{ab}	0.0014
Projected actual fat 8; yield, 305 d (lb)	54±3ª	848±9 ^{ab}	829±7 ^b	846±13 ^{ab}	0.0072
Projected actual 73 protein yield, 305 d (lb)	36±2ª	740±7ª	720±6 ^b	729±11 ^{ab}	0.0318

Effect of Dam Parity on Offspring Phenotype								
	Dam	parity	P	-value				
Endpoints	Nulliparous (parity = 0)	Parous (parity ≥1)	Dam parity	Dam parity by technique interaction				
Reproduction traits								
Age at first calving (mo)	23.3 ± 0.2	23.6 ± 0.2	0.29	0.16				
Days open, first lactation	96.0 ± 4.2	103.3 ± 3.2	0.15	0.36				
Production traits	603	lb						
Projected actual milk yield, 305 d (lb)	23674±154	24277±136	0.0019	0.37				
Projected actual fat yield, 305 d (lb)	829±6	860±5	<0.0001	0.17				
Projected actual protein yield, 305 d (lb)	721±5	742 ± 4	0.0007	0.22				

Developmental Programming Occurs in Cattle									
△ Maternal Environment	Type of cattle	Treatment	Altered Adult Phenotype	Reference					
IVF-Reverse	First trimester								
parity	Beef cattle	Low crude protein	් Heavier, larger muscle size ♀ Lighter	Micke et al., Anim Reprod Sci 117:1 (2010: Mol Cell Endocrinol 332:234 (2011)					
	Beef cattle	Nutrient restriction	<pre> Lower antral follicle count Higher blood pressure </pre>	Mossa et al., Biol Reprod 88:92 (2013)					
98 B.	Second trimester								
	Beef cattle	Nutrient restriction	ଟ୍ୟ reduced growth, increased muscle size	Micke et al., Anim Reprod Sci 117:1 (2010: Mol Cell Endocrinol 332:234 (2011)					
\checkmark	Third trimester								
5-1E W.	Beef cattle	Supplemental protein	Q Higher heifer fertility	Martin et al., J Anim Sci 85:841 (2007)					
	Dairy cattle	Heat stress	Q Decreased milk yield	Monteiro et al., J. Dairy Sci. 99:8443					
△ Physiology				(2016)					

I'm An Artificial Calf

Ralph A. Porterfield

I'm a little heifer, I'm an artificial calf, Some people think it's funny, but go ahead and laugh. When I grow up to be a cow and join the milking herd I'll bet I'll be a big success — perhaps the latest word.

You seldom find a little calf as beautiful as me, If I could be your pin-up girl I'd be happy as can be. Now I'll tell you my ambition which is not to fly or sail But to always be on duty and to put 'er in the pail.

I want to be a glamour girl and take in every fair, I want to win blue ribbons, at least to win my share. In just another year or two I'll have symmetry and style And to this I'm looking forward for I think it well worth while.

When people come to see me they tell me I have type, And off they go just feeling fine without a single gripe. It's always nice to pléase them for I'm sure that they can see That artificial breeding is worth its modest fee.

Think it over, brother, for I know I'll pay my way By eatin' and producin' and consumin' lots of hay. Enroll your little herd of cows and be the last to laugh 'Cause you'll never go astray with an artificial calf.

Hoard's Dairyman 94, 177 (1949)

NOTES

Challenges, Opportunities, & Prospects of US Dairy Production

Gordie Jones DVM

53rd Florida Dairy Production Conference April 20th 2017

Dr. Gordie Jones

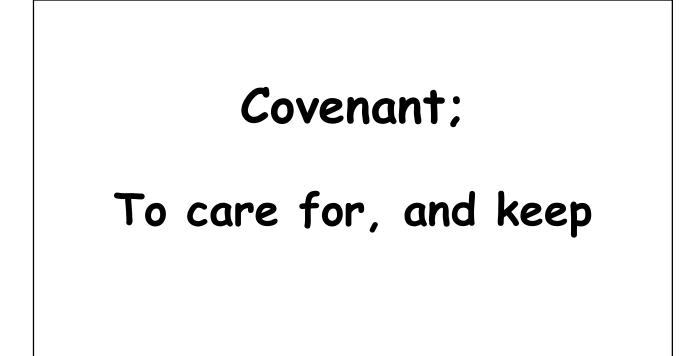
- 15 years Dairy Practice
- 10 years Dairy Nutrition / Facility /Cow Comfort consulting
- 3 years Monsanto (BST) consulting
- 6 years designed & managed Fair Oaks Dairy Farms (20,000 cows)
- 5 years building and managing my dairy farm!
- Consulting again

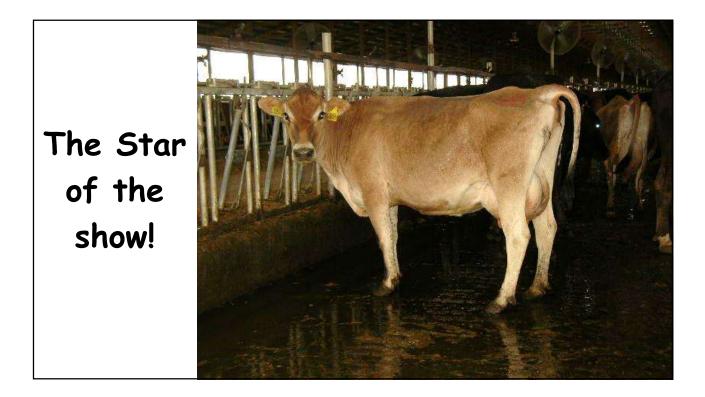
Remember we are here because we love cows!

"Pleistocene Mega fauna"

-Born during the last Ice Age

The First Farmers


- Were in Mesopotamia
- Modern day Iraq
- Large headed grains
- Wheat, Barley, Triticale
- A stick in the sand
- A little water and we were farmers!


The First Farmers

- Our First fences
- Were to keep the wild cows out!!
- She opened the gate
- And we now had a cow!

Only 11 species were able to be domesticated.

- Our Cow is the star!
- She Provided POWER, Protein, & Fertilizer
- She truly is the foundation of civilization.
- The foster mother of the human race
- All of the domesticated animals are "herd" species - looking for a leader
- Except the Cat!!

